Умножение под знаком корня

Умножение корней

умножение под знаком корня

Арифметический квадратный корень. Свойства корней n-ой степени. Возвести число в натуральную степень — значит умножить число само на. Квадратные корни можно умножать так же, как целые числа. Иногда перед Результат перемножения запишите под одним знаком корня. Например. Урок по теме Умножение показателей корня и подкоренного выражения на одно и то же значений переменной, содержащейся под знаком корня.

Конечно, не всегда всё будет так красиво. Иногда под корнями будет стоять полная лажа — непонятно, что с ней делать и как преобразовывать после умножения. Чуть позже, когда начнёте изучать иррациональные уравнения и неравенства, там вообще будут всякие переменные и функции. И очень часто составители задач как раз и рассчитывают на то, что вы обнаружите какие-то сокращающиеся слагаемые или множители, после чего задача многократно упростится. Кроме того, совсем необязательно перемножать именно два корня.

Можно умножить сразу три, четыре — да хоть десять! Правило от этого не поменяется. Как видите, в третьем множителе под корнем стоит десятичная дробь — в процессе вычислений мы заменяем её обычной, после чего всё легко сокращается. В будущем это сэкономит вам кучу времени и нервов.

Но это было лирическое отступление. Случай произвольного показателя Итак, с квадратными корнями разобрались. А что делать с кубическими? Да всё то же. В общем, ничего сложного. Разве что объём вычислений может оказаться. Мы перемножаем кубические корни, избавляемся от десятичной дроби и в итоге получаем в знаменателе произведение чисел и Это довольно большое число — лично я с ходу не посчитаю, чему оно равно.

Не спешите перемножать числа в подкоренном выражении. При всей очевидности этого замечания должен признать, что большинство неподготовленных учеников в упор не видят точные степени. Вместо этого они перемножают всё напролом, а затем удивляются: Впрочем, всё это детский лепет по сравнению с тем, что мы изучим. Умножение корней с разными показателями Ну хорошо, теперь мы умеем перемножать корни с одинаковыми показателями. А что, если показатели разные?

Можно ли вообще это делать? Всё делается вот по этой формуле: Это очень важное замечание, к которому мы вернёмся чуть позже.

Квадратный корень. Начальный уровень.

А пока рассмотрим парочку примеров: Теперь давайте разберёмся, откуда взялось требование неотрицательности, и что будет, если мы его нарушим.: Умножать корни несложно Почему подкоренные выражения должны быть неотрицательными?

Конечно, можно уподобиться школьным учителям и с умным видом процитировать учебник: Требование неотрицательности связано с разными определениями корней чётной и нечётной степени соответственно, области определения у них тоже разные. Ну что, стало понятнее? Лично я, когда читал этот бред в 8-м классе, понял для себя примерно следующее: Поэтому сейчас объясню всё по-нормальному.

Сначала выясним, откуда вообще берётся формула умножения, приведённая выше. Для этого напомню одно важное свойство корня: Следовательно, мы легко сведём любые корни к общему показателю, после чего перемножим. Отсюда и берётся формула умножения: Рассмотрим вот такое число: А теперь выполним обратное преобразование: Ведь любое равенство можно читать как слева-направо, так и справа-налево: Значит, для чётных степеней и отрицательных чисел наша формула уже не работает.

После чего у нас есть два варианта: Вот вам простенький пример: Как видите, свойство корней, позволяющее вносить множитель под знак корня, вполне годится для упрощения. Кроме того, внесение множителя под корень позволяет легко и просто сравнивать значения различных корней. Безо всякого их вычисления и калькулятора! Это умение очень важно в солидных заданиях, при раскрытии модулей и прочих крутых вещах. Сравните вот эти выражения. Какое из них больше? Так сразу и не скажешь А если внести числа под знак корня?

Отсюда сразу правильный ответ, безо всяких сложных вычислений и расчётов: Но и это ещё не всё! Вспомним, что все формулы работают как слева направо, так и справа налево. Мы пока формулу умножения корней слева направо употребляли. Давайте запустим это свойство корней наоборот, справа налево. Разве это что-то даёт!?

Предположим, нам нужно извлечь без калькулятора! Кое-кто на этом этапе и падёт в неравной борьбе с задачей Но мы упорные, мы не сдаёмся!

Как извлекать корни из больших чисел? Вспоминаем формулу извлечения корней из произведения. Ту, что я чуть выше написал. Но где у нас произведение!? У нас огромное число и всё Да, произведения здесь.

Но если нам надо - мы его сделаем! Разложим это число на множители. Для начала сообразим, на что делится это число ровно?

умножение под знаком корня

Идите в Особый разделтема "Дроби"там они. На 3 и на 9 делится это число. Это один из признаков делимости. На три нам делить ни к чему сейчас поймёте, почемуа вот на 9 поделим. Хотя бы и уголком. Вот мы и нашли два множителя! Первый - девятка это мы сами выбралиа второй - такой уж получился. С числом поступим аналогично. Оно тоже делится на 3 и 9. На 3 опять не делим, делим на 9.

Корни и степени и их свойства. Корень n-ой степени. Степень в корне

А это число мы знаем! Всё получилось легко и элегантно! Корень пришлось по кусочкам извлекать, ну и ладно. Так можно поступать с любыми большими числами. Раскладывать их на множители, и - вперёд! Кстати, а почему на 3 делить не надо было, догадались? Да потому, что корень из трёх ровно не извлекается! Имеет смысл раскладывать на такие множители, чтобы хотя бы из одного корень хорошо извлекался.

Это 4, 9, 16 ну, и так далее. Делите своё громадное число на эти числа поочерёдно, глядишь, и повезёт! Может и не повезти. Скажем, число при разложении на множители и использовании формулы корней для произведения даст такой результат: Всё равно мы упростили выражение.

умножение под знаком корня

В математике принято оставлять под корнем самое маленькое число из возможных. В процессе решения все зависит от примера может и без упрощения всё посокращаетсяа вот в ответе надо дать результат, который уже дальнейшему упрощению не поддаётся. Кстати, знаете, что мы с вами сейчас с корнем из сделали? Мы вынесли множители из-под знака корня!

умножение под знаком корня

Вот так называется эта операция. А то попадётся задание - "вынести множитель из-под знака корня" а мужики-то и не знают Вот вам ещё одно применение свойства корней.

умножение под знаком корня

Как вынести множитель из-под корня? Разложить подкоренное выражение на множители и извлечь корни, которые извлекаются. Важно правильно выбрать множители.